2026/01/11 13:15 1/3 der _richtige_io_sheduler

e ,noop“ - wie der Name schon sagt, scheduled der gar nichts. Simples

FIFO-Queuing fur alle I/O Requests egal woher sie stammen. Ist gedacht

fur wirklich intelligente Hardware, die ihr eigenes internes Scheduling
macht, und wo jedes Scheduling durchs 0S kontraproduktiv ware. (Etwa
SANs, konnte ich mir vorstellen.) Update: Angeblich ist dies auch der

beste Scheduler fir Flash-Medien.

e ,deadline”: 1/0-Requests werden nach der Blocknummer sortiert in eine

Warteschlange eingeordnet unabhangig woher sie stammen. Diese Queue wird

die

die

dann zyklisch von vorn nach hinten abgearbeitet. Damit I/0-Requests
nicht unmalig warten missen falls die Schlange zu lange wird, werden

I/0-Requests uberdies in separate FIFOs fiur Read und Write-Requests
eingeordnet, nach Alter sortiert. Jedem Request wird dabei eine
Maximaldauer zur Erledigung zugewiesen. Solange diese Maximaldauern
nicht Uberschritten werden werden die I/0s wie zuvor beschrieben in der
Sortierreihenfolge der Blocknummern durchgefuhrt. Sobald die
Maximaldauern aber uberschritten werden, werden nur mehr abwechselnd

altesten Read- und Write-Requests aus den FIFOs bedient, bis sich die
Situation wieder gebessert hat - dann wird wieder das zyklische
Schedulen in Blockreihenfolge angeworfen.

e ,anticipatory“: Tut dasselbe wie ,deadline”, wartet aber nach jedem

I/O-Vorgang (ich hoffe nur bei Schreibvorgangen aus den Deadline-FIFOs)

einige Millisekunden ob vielleicht ein Nachfolge-Request daher kommt.
Dadurch werden zahlreiche sequenzielle I/0s besser unterstutzt, welche
an verschiedenen Stellen der Disk gleichzeitig erfolgen. Sprich, wenn
verschiedene Prozesse zur selben Zeit verschiedene Dateien bearbeiten.
Der "deadline" geht dabei namlich ziemlich ein und "seekt" sich bléd.

e cfg“: Der ,Completely Fair Queueing” Scheduler arbeitet vollig

anders. Er scheduled Zeitscheiben, in denen nur die I/O eines bestimmten

ist.

Prozesses auf die Disk erfolgt. Die GrofBe der Zeitscheiben ist von
Statistiken und der Prozessprioritat abhangig, und ausserdem wird
innerhalb eines Prozesses noch zwischen synchronen und asynchronen
Requests unterschieden. Aber zwischen den Prozessen gibt es ein Round
Robin, daher kommt jeder Prozess nach einer relativ kurzen Zeit wieder
dran, und keiner "verhungert" auch wenn sehr viel I/0 durchzufihren

Der cfq ist der komplexeste der I/O Scheduler, reagiert aber am schnellsten. Daher ist es fur den
typischen Desktop-Betrieb normalerweise der am besten geeignete I/O Scheduler. In vielen Linux-
Distris wird er daher auch als Default-Scheduler eingesetzt.

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

Last update:

2025/11/29 22:06 der _richtige_io_sheduler https://www.deepdoc.at/dokuwiki/doku.php?id=der _richtige_io_sheduler&rev=1289205455

Allerdings scheduled der cfq die Requests nicht optimal aus der Sicht der Arbeit welche die Disk zu
erledigen hat. Hier ist der anticipatory normalerweise am effizientesten - insbesondere wenn Batch-
Jobs laufen die ihrerseits jede Menge sequenzielle Dateien (gleichzeitig) bearbeiten. Auch zum
Ansehen von Videos etc. ist er wohl der geeignetste.

Der deadline wiederum glanzt bei vélligen Random-Zugriffen, wie sie vor allem bei Datenbanken oft
vorkommen. Hier sorgt er dafur, dass die Seeks minimiert werden welche fur das Durchfuhren der
Random-Zugriffe erforderlich sind. Zwar ist der anticipatory dem deadline sehr ahnlich, aber durch die
kleinen Wartepausen die er einlegt um ,Sequenzialitat zu erkennen” (die bei Datenbankzugriffen
nicht vorkommt), vergeudet das anticipatory Zeit welche der deadline nicht vergeudet.

Wenn Datenbankzugriffe aber nicht andauernd erfolgen, kann der anticipatory doch wieder besser
sein: Bei Datenbankzugriffen zwar etwas langsamer, kann er aber zwischendurch bei sequenziellen
Zugriffen wieder Zeit und Seeks sparen.

Wenn neben den Datenbanken und Batch-Jobs aber auch noch ,normal” gearbeitet werden soll,
empfiehlt sich wieder der cfg: Durch seine Zeitscheiben werden auch sequenzielle Jobs - zumindest
innerhalb der Zeitscheibe - halbwegs effizient abgearbeitet, durch seine verschieden langen
Zeitscheiben kann er aber auch Datenbanken ausreichend effizient bedienen obwohl nicht ganz so
gut wie der deadline. Vor allem aber verhungern wahrend dessen keine interaktiven
Benutzerprozesse.

Ich werde aus diesen Erkenntnissen die Konsequenz ziehen, den cfq als Default-Scheduler
einzustellen.

Wenn ich aber fette Batch-Jobs laufen lasse, wie groRe emerge-Orgien wo der Compiler standig
sequeziell Source-Dateien liest und Object-Files erzeugt, werde ich temporar auf den anticipatory
umschalten. Dasselbe gilt beim Movie-Ansehen, oder wenn sehr groRe Dateien moglichst schnell
durch die Gegend kopiert werden sollen und mir Interaktivitat wahrenddessen nicht so wichtig ist.

Wenn ich hingegen einen Rechner als dezidierten Datenbankserver unter hoher Last einsetze, ist
hingegen der ,deadline” die beste Wahl. (cfq durfte auch OK sein wenn die Last nicht ganz so hoch
ist.)

Tja, soweit meine Erkenntnisse.
Hier noch wie man die Scheduler umschaltet (geht im laufenden Betrieb):
<pre>

1. !'/bin/sh

SCHEDULER=${1:-cfq} Ismod | grep ,$SCHEDULER[_-l]iosched” > /dev/null 2>& 1 || {
modprobe "$SCHEDULER-iosched"
} for D in /sys/block/*; do
S="$D/queue/scheduler"
test -e "$S" || continue

echo "Assigning $SCHEDULER to $S."
echo "$SCHEDULER" > "$S"

https://www.deepdoc.at/dokuwiki/ Printed on 2026/01/11 13:15

2026/01/11 13:15 3/3 der _richtige_io_sheduler

done

From:
https://www.deepdoc.at/dokuwiki/ - DEEPDOC.AT - enjoy your brain

Permanent link:
https://www.deepdoc.at/dokuwiki/doku.php?id=der_richtige_io_sheduler&rev=1289205455

Last update: 2025/11/29 22:06

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

https://www.deepdoc.at/dokuwiki/
https://www.deepdoc.at/dokuwiki/doku.php?id=der_richtige_io_sheduler&rev=1289205455

