
2026/01/10 09:42 1/8 Systemd

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

Systemd

Hauseigenes Apt-Repo: https://apt.iteas.at

Ein Service bearbeiten und personalisieren.

systemctl edit --full rc-local

Um den Defaulteditor VI von SystemD zu überschreiben bedient man sich diesem Befehl:

EDITOR=nano systemctl edit --full rc-local

Hier wird das komplette Service kopiert und wird von Updates des Systems nicht weiterhin berührt.
Dies kann je nachdem zu irgendwann auch zu Problemen führen. Deshalb gibt es auch eine andere
Variante wo die Files virtuell verschmolzen werden:

EDITOR=nano systemctl edit apache2

Oder wenn es ein komplett neues Unitfile ist:

systemctl edit -f -l rc-local

Man könnte auch Dienste direkt in /etc/systemd/system/blabla-custom.service kopieren.
Von dem wird abgeraten. Vor allem da viele Services erst von anderen Systemddiensten nur temporär
angelegt werden. Das Kommando oben extrahiert die richtigen Files automatisch.

Beispiel Einbau von Sleep beim Start eines Services

[Unit]
Description=Puppet agent
Requires=network.target
[Service]
Type=forking
EnvironmentFile=-/etc/default/puppet
PIDFile=/run/puppet/agent.pid
ExecStartPre=/bin/sleep 15
ExecStart=/usr/bin/puppet agent $DAEMON_OPTS
[Install]
WantedBy=multi-user.target

Timeout beim Beenden eines Services

Sehr nützlich wenn durch z.B. nicht mehr erreichen von Services wie NB's - WLAN Dienste ihr
maximales Timeout erreichen würden.

https://apt.iteas.at
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=KE592Y5993ZKW

Last
update:
2025/11/29
22:06

server_und_serverdienste:systemd https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

https://www.deepdoc.at/dokuwiki/ Printed on 2026/01/10 09:42

[Unit]
Description=Make remote CUPS printers available locally
After=cups.service avahi-daemon.service
Wants=cups.service avahi-daemon.service

[Service]
TimeoutStopSec=2
ExecStart=/usr/sbin/cups-browsed

[Install]
WantedBy=multi-user.target

Autologin systemd auf der Konsole ohne Displaymanager

Hierzu legt man sich folgendes File an:

nano /etc/systemd/system/getty@tty1.service.d/override.conf

Mit folgenden Inhalt

[Service]
ExecStart=
ExecStart=-/sbin/agetty --autologin xbmc --noclear %I 38400 linux

Hier wird z.B. der xbmc Benutzer automatisch eingeloggt. Danach werden natürlich .zshrc .bashrc und
auch die .xinitrc beachtet.

Systemdservices über Remote ausführen

Mit Systemd ist es sehr bequem möglich Dinge zu organisieren ohne das man direkt am Host ist. z.b.

systemctl -H root@myhost.supertux.bla status apache2

NFS-Client

systemctl enable nfs-client.target
systemctl enable rpc-statd.service
systemctl enable rpcbind.service

Mounten mit Systemd - FSTAB ruhe in Frieden

2026/01/10 09:42 3/8 Systemd

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

Systemd Mount mit NFS

Testsystem: Debian 10/Proxmox 6.3

Die FSTAB ist mehr oder weniger überholt. Benötigt wird sie vom System wohl nur mehr für den Root
Mount. Generell wird bereits bei jedem manuellen FSTAB-Eintrag ein Systemd-Unit-File generiert dass
auf die FSTAB verweist. Daher wird auch empfohlen statt der FSTAB nur mehr Systemd zu verwenden,
was sehr viele Vorteile mit sich bringt. Z.B. hat man damit die Möglichkeit auch Abhängigkeiten von
anderen Programmen und States anzugeben. Ein praktischen nerviges Beispiel wäre wenn ein
Netzwerkmount nicht immer automatisch in der FSTAB gemountet wird, weil das Netzwerk vielleicht
nicht immer gleich schnell verfügbar ist. Und obwohl man in der FSTAB die Option gesetzt hat dass,
das Netzwerk verfügbar sein muss, funktioniert es trotzdem doch immer nicht. Systemd schafft hier
für dich Abhilfe. Auch Proxmox verwendet den Systemd-Mounter als Default.

Hier als Beispiel ein einfacher Mount einer lokalen HDD. Als erstes legst du ein sogenanntes Unit-File
an. Der Mountpoint wird dabei automatisch erstellt.

systemctl edit -f -l "/mnt/datastore/HDD-extern-OSIT"

Um den Defaulteditor VI von SystemD zu überschreiben bedient man sich diesem Befehl:

EDITOR=nano systemctl edit -f -l "/mnt/datastore/HDD-extern-OSIT"

Wie du siehst muss der Name der exakte Mountpoint sein. Nun befüllst du das File mit diesem Inhalt:

[Install]
WantedBy=multi-user.target

[Unit]
Description=Mount datatstore 'sicherung-osit-extern' under
'/mnt/datastore/HDD-extern-OSIT'

[Mount]
Options=defaults
Type=ext4
What=/dev/disk/by-uuid/d6b3aa86-aa6c-4b41-b6b2-16457820169629
Where=/mnt/datastore/HDD-extern-OSIT

Und NFS4:

[Install]
WantedBy=multi-user.target

[Unit]
Description=Mount datatstore under /home/mydata
Requires=network.target
Requires=NetworkManager.service
Requires=network-online.target

[Mount]

https://proxmox.com/

Last
update:
2025/11/29
22:06

server_und_serverdienste:systemd https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

https://www.deepdoc.at/dokuwiki/ Printed on 2026/01/10 09:42

Options=rw,_netdev,auto,acl,exec,intr,bg,nfsvers=4,minorversion=2,x-
systemd.device-timeout=60,x-systemd.mount-timeout=60
Type=nfs4
What=myhostserver.lan:/ssd-pool/mydatastore
Where=/home/mydata
TimeoutSec=60

Mit dem nächsten Befehl hast eine tolle Übersicht für alle Mountpoints die es gibt, und ob diese im
Autostart sind oder nicht.

systemctl list-unit-files -t mount

UNIT FILE STATE
-.mount generated
boot-efi.mount generated
dev-hugepages.mount static
dev-mqueue.mount static
mnt-datastore-HDD\x2dextern\x2dOSIT.mount disabled
proc-fs-nfsd.mount static
proc-sys-fs-binfmt_misc.mount static
run-rpc_pipefs.mount static
sys-fs-fuse-connections.mount static
sys-kernel-config.mount static
sys-kernel-debug.mount static

In den Autostart damit:

systemctl enable "mnt-datastore-HDD\x2dextern\x2dOSIT.mount"

Und mounten:

systemctl start mnt-datastore-HDD\\x2dextern\\x2dOSIT.mount

Bei der Mountübersicht sieht das ganze nun so aus:

UNIT FILE STATE
-.mount generated
boot-efi.mount generated
dev-hugepages.mount static
dev-mqueue.mount static
mnt-datastore-HDD\x2dextern\x2dOSIT.mount enabled
proc-fs-nfsd.mount static
proc-sys-fs-binfmt_misc.mount static
run-rpc_pipefs.mount static
sys-fs-fuse-connections.mount static
sys-kernel-config.mount static
sys-kernel-debug.mount static

Bestehende Unitfiles kann mit dem folgenden Befehlen editieren:

2026/01/10 09:42 5/8 Systemd

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

systemctl edit -l mnt-datastore-HDD\\x2dextern\\x2dOSIT.mount

oder auch:

systemctl edit -l "/mnt/datastore/HDD-extern-OSIT"

Systemd Mount mit Samba

Testsystem: Ubuntu 20.04, 22.03LTS auf Proxmox LXC

Dies gestaltet sich sehr ähnlich wie NFS. Lediglich ein Paket und die Authentifizierung kommt dazu.

apt install cifs-utils -dy

Danach erstellen wir unser Unitfile, und aktivieren es:

EDITOR=nano systemctl edit -f -l "/data-docs"

[Unit]
Description=samba mount for sambafiles
Requires=systemd-networkd.service
After=network-online.target
Wants=network-online.target

[Mount]
What=//yourserver.lan/data-docs
Where=/media-kodi
Options=credentials=/root/.smbcredentials,auto,vers=3.0,uid=2344,gid=2344,fi
le_mode=0777,dir_mode=0777
Type=cifs
TimeoutSec=30

[Install]
WantedBy=multi-user.target

Nun noch SystemD reloaden und den Mount aktivieren:

systemctl daemon-reload
systemctl enable "data\x2ddocs.mount"

Nun kann das Systemd-Service getartet werden, und somit wird auch das Laufwerk eingehängt.

systemctl start "data\x2ddocs.mount"

Für die Erweiterung deines Unitfiles empfehle ich diesen Artikel und auch diesen auf Ubuntuusers.

https://wiki.ubuntuusers.de/systemd/Units/
https://wiki.ubuntuusers.de/systemd/Mount_Units/

Last
update:
2025/11/29
22:06

server_und_serverdienste:systemd https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

https://www.deepdoc.at/dokuwiki/ Printed on 2026/01/10 09:42

Systemd Autostart

Hier ein Beispiel für ein WOL Script das beim Boot ausgeführt wird, aber erst wenn der Server online
ist.

systemctl edit -f -l wol-at-boot.service

Inhalt:

[Unit]
Description=execute Wake-up on LAN

Wants=network.target
After=syslog.target network-online.target

[Service]
Type=oneshot
ExecStart=/etc/cron.hourly/wol.sh

[Install]
WantedBy=multi-user.target

systemctl enable wol-at-boot.service
systemctl daemon-reload

Optional: Abhängigkeit Netzwerk

Gerade beim Mount von Laufwerken kommt immer wieder mal das Thema auf das beim Zeitpunkt des
Mounts das Ziel noch nicht erreichbar ist. Manchmal hilft da auch kein „Requires“ für das
Netzwerkservice. Abhilfe kann man sich mit einem kleinen Trick schaffen. In dem man ein System-
Service generiert das einen simplen Pincheck zum (einen) Zielserver im Netzwerk ausführt und prüft
ob der Zielserver für den Mount erreichbar ist. Und erst dann wird der Mount gestartet.

EDITOR=nano systemctl edit -f -l wait-for-ping.service

Mit dem folgenden Inhalt (Zieladresse muss angepasst werden):

[Unit]
Description=Blocks until it successfully pings virtu01
After=network-online.target

[Service]
ExecStartPre=/usr/bin/bash -c "while ! ping -c1 192.168.1.4; do sleep 1;
done"
ExecStart=/usr/bin/bash -c "echo good to go"
RemainAfterExit=yes

2026/01/10 09:42 7/8 Systemd

DEEPDOC.AT - enjoy your brain - https://www.deepdoc.at/dokuwiki/

[Install]
WantedBy=multi-user.target

Speicher und aktivieren:

systemctl enable --now wait-for-ping.service

Dieses Service fügt man nun als Abhängigkeit im Systemd-Mount hinzu. Z.B.

[Install]
WantedBy=multi-user.target

[Unit]
Description=Mount datatstore under /home/mydata
Requires=network.target
Requires=NetworkManager.service
Requires=network-online.target
After=wait-for-ping.service

[Mount]
Options=rw,_netdev,auto,acl,exec,intr,bg,nfsvers=4,minorversion=2,x-
systemd.device-timeout=60,x-systemd.mount-timeout=60
Type=nfs4
What=myhostserver.lan:/ssd-pool/mydatastore
Where=/home/mydata
TimeoutSec=60

Wichtig ist hier der Part „After=wait-for-ping.service“. Beim Nächster Start des Mount wird auf die
Erreichbarkeit des Ziels gewartet.

Debuging

Um z.B. Zeiten beim Systemstart ansehen zu können gibt es zwei nette Befehle:

systemd-analyze plot > bootchart.svg
systemd-analyze blame

Weitere nützliche Systemd-Befehle

systemctl reset-failed
systemctl --failed

Last
update:
2025/11/29
22:06

server_und_serverdienste:systemd https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

https://www.deepdoc.at/dokuwiki/ Printed on 2026/01/10 09:42

Links

Hersteller|Dokumentation Systemd
Hersteller|Dokumentation Systemd Mount Unit
https://wiki.ubuntuusers.de/systemd/systemctl/
https://wiki.ubuntuusers.de/systemd/Mount_Units/

From:
https://www.deepdoc.at/dokuwiki/ - DEEPDOC.AT - enjoy your brain

Permanent link:
https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

Last update: 2025/11/29 22:06

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.mount.html
https://wiki.ubuntuusers.de/systemd/systemctl/
https://wiki.ubuntuusers.de/systemd/Mount_Units/
https://www.deepdoc.at/dokuwiki/
https://www.deepdoc.at/dokuwiki/doku.php?id=server_und_serverdienste:systemd&rev=1745153892

	Systemd
	Beispiel Einbau von Sleep beim Start eines Services
	Timeout beim Beenden eines Services
	Autologin systemd auf der Konsole ohne Displaymanager
	Systemdservices über Remote ausführen
	NFS-Client
	Mounten mit Systemd - FSTAB ruhe in Frieden
	Systemd Mount mit NFS
	Systemd Mount mit Samba

	Systemd Autostart
	Optional: Abhängigkeit Netzwerk
	Debuging
	Weitere nützliche Systemd-Befehle

	Links

